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Basic Field Situation

o From a population of S sampling units,
s are selected and surveyed for the
species.

o Units are closed to changes in
occupancy during a common ‘season’.

o Units must be repeatedly surveyed
within a season.

Camera-trap surveys: typically
temporal replication based on fixed
time periods (daily, weekly)



Resulting Data
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Single Season Model

o y = probability a unit Is occupied.

O p; = probability species is detected at

a unit in survey | (given
presence).



Detection Probability in
Camera-trap Studies

o Pr (detect species at unit | survey |) =
Pr (unit occupied during season)

X Pr (at least 1 individual of species passes
camera trap during survey |)

X Pr (species detected in survey j | unit
occupied and at least 1 individual

passes camera trap during survey |)



Detection Probability in
Camera-trap Studies

o Detection probability thus has 2
components:

One based on space use

One based on camera
Camera must be “tripped”
Photo must permit species ID



Single Season Model

o Investigating patterns in occupancy.

o Variety of approaches all recognizing that an
observed ‘absence’ may be the result of a true

absence or a nhondetection. (e.g., Hewitt 1967,

Geissler and Fuller 1987, Azuma et al. 1990, MacKenzie et

al. 2002, Tyre et al. 2003, Wintle et al. 2004 and Stauffer et
al. 2004)

o MacKenzie et al. (2002) provide most general
treatment of the problem.



Single Season Model

o Consider the data consists of 2 ‘layers’
True presence/absence of the species.

Observed data which are conditional upon
species distribution.

o Knowledge about the first layer is
Imperfect.

o Must account for the observation process
to make reliable inferences about
occurrence.



Model Development
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Observed Data Likelihood

o Model all possible stochastic
processes that may have resulted In
observed detection histories.

o Take verbal description of the
observed data and translate it into a
mathematical equation.
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Observed Data Likelihood

For example,
h, =101

Verbal description: species is present at the
unit, was detected in first and third survey,
not detected in second survey.

Mathematical translation:

Pr(h, =101) = yp, (1- p,) P4
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Observed Data Likelihood

For example,
h, =000

Verbal description: species is present at the
unit and was never detected, OR species is
absent.

Mathematical translation:

pr(hzzooo):wﬁl(l—p,.)+(1—w)
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Observations

P 1
Biological Pt 1<;33:0
Reality 1 P 1

, 1-p, 0 <
Present: tp 70
: P, »1

. »1 <
1- Ps O
1-y | 0 < Ps 1

Absent | 1-p, ™0 <
| 1-p, 0

0)
\1‘0

1\>0
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Observations
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Observations

P 1
Biological Pt 1<;33:0
Reality 1 P 1

, 1-p, 0 <
Present. R0
: P, »1

. »1 <
1- Ps O
1-vy i 0 < Ps 1

Absent | -p, 70 <
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Observed Data Likelihood

o Model likelihood is the product of the
probability statements.

ODL(y,plh)= Pr(h\w,p):ﬁPr(hi)

o Likelihood can be maximized to obtain
MLE'’s, or used within a Bayesian
framework.
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Complete Data Likelihood

o The data we wish we had!

o z; IS true presence/absence of species
at unit |

o Bernoulli random variable with
Pr(success) = y
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Complete Data Likelihood

OPr(Zi =1):\|1

1-z

o Pr(zi ‘\If) =y" (1-y)
o Compare with: (2] p*(1-p)"
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Complete Data Likelihood

o h;; Is detection/nondetection of species
(given presence) in survey j of unit |

Bernoulli random variable with
Pr(success) =p

Pr(hij ‘ pj : Zi :1) — p?ij (1_ pj )1_hij
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Complete Data Likelihood

o Combining these terms, the overall
can be expressed as:

likelihood

CDL(p,w\h,z)=ﬁ<
I=1

\
(

S
=11
=1

\

k

J=1

p?ij (1_ pj )1_hij

— 1~

j=L

H[Pr(hij\pj,zi :1)JPr(zi \p):

4

Zi

i (L-y)

o Note that many terms will disappear
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Complete Data Likelihood

o For example, if zz=1 and h; = 101

| K —N::
CoL(pvhn.2)| [T6) (-
R

21
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Complete Data Likelihood

o For example, if z = 1 and h; = 000

— Z;

oL by z)= | T80 (-, | v v

=y[[(1-p))

j=1
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Complete Data Likelihood

o For example, if z, = 0 and h; = 000

| K —N::
CoL(pvhn.2)| [T6) (-
R
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Complete Data Likelihood

o Unfortunately, the true values will
typically be unknown

o Solutions:

Replace with expected values

Expectation — Maximization (EM)
Algorithm

Replace with imputed values (data
augmentation)

24 Markov Chain Monte Carlo (MCMC)



Complete Data Likelihood

o CDL can also be expanded to include
units that were never surveyed

CDL(p, v

h,Z):li[<
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Covariates

o Season-specific
constant within a season, but may

vary between seasons.

e.g., habitat type, patch size, generalized
weather patterns

o Survey-specific
may vary between surveys.

e.g., local environmental conditions,

observers
26



Covariates

o Occupancy and detection probabilities
may be functions of season-specific
covariates (via logit link, say).

logit (y; ) =a+bx,

logit ( p; ) =c+dx
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Covariates

o Detection probabilities may also be a
function of survey-specific covariates.

logit ( p; ) =c-+dx, +ez
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Covariates

o Covariates may be continuous or
categorical.

o Advisable to standardize continuous
covariates on to some meaningful scale
such that covariates are approximately
symmetrically distributed about zero.

Xi =
b

o z-transformation can be done within

PRESENCE.
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Covariates

o Categorical covariates with m
categories should be represented with
m — 1 indicator (dummy) variables.

e.g., If 4 habitat types, use 3 indicator
variables: HabA, HabB, HabC, with
habitat D considered the ‘standard’.

o However, suggest all m indicator
variables be included in data file.
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‘Missing’ Observations

o Implicit assumption that jt surveys of all
units are conducted at (approximately)
the same time; possibly unlikely in
practice.

o Camera failure or destruction may result
IN some units not being surveyed during
some occasions.
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‘Missing’ Observations

Day
Unit |1 2 345
1 (1101-20
2 (-0-11

Pr(h, =101-0)=wyp, (1-p,) p, (1 ps)

Pr(h,=—0-11)=y(1-p,) p,Ps
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‘Missing’ Observations

o Survey-specific covariates can only be
missing If associated detection survey
IS also missing.

o Season-specific covariates cannot be
missing.
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Pr(occupied|nondetection)

o “Given the species was not detected,
Is the unit occupied?” is sometimes of
Interest.

o Can be derived from modelling results
using Bayes theorem.

o Referred to as “conditional” (on
., hondetection) occupancy



Pr(occupied|nondetection)

. _ Pr(occupied & nondetection)
Pr (occupied |nondetection ) =

Pr(nondetection)

\Vi]j(l_ pij)

\IfiH(l_ Bij )+(1_\|’i)

j=1

o Standard errors can be derived with
the delta method.
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Single Season
Model

Part |l



Model Assumptions

o Closure.
o Surveys are independent.
o No unmodelled heterogeneity.

o Species identified correctly (no false
detections)
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What if Occupancy
Changes?

o Can formally test by grouping sampling
occasions within the season and using
multiseason models

o But changes do not always cause problems

o If species physically occupies units at
random within a season, ‘occupancy’
parameter relates to probability a unit is
used by the species.
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What if Occupancy
Changes?

Pr (detect species at unit i in survey j) =

Pr(uses unit i during season)

X Pr(physically present at unit at | \uses unit)

x Pr (detection in survey j|present and uses unit)

o Closure implies 2" component = 1.

o When changes are random, ‘detection probability’ is
the product of 2"d and 3'¥ components

o Recall that ‘detection probability’ also has spatial and

,, camera components in camera-trap studies



What if Occupancy
Changes?

o Immigration/emigration only; ‘occupancy’
parameter relates to probabillity Is present at
a unit at end/beginning of season
respectively.

should allow detection probability to vary
within a season.

should pool some survey occasions.

o Open models permitting staggered entry
and departure times (only 1 entry/depart per
season)

Single-season models (Kendall et al. 2013)
Multiple seasons (Chambert et al. 2015)
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What if Occupancy
Changes?

o Some non-random changes may
cause blases.

o Is a ‘'season’ defined appropriately?
o Is time between surveys appropriate?

o Area of active research.
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Lack of Independence

o Surveys are not independent if the outcome of
survey A is dependent upon the outcome of
survey B.

o Some forms of dependence may be
accommodated with good designs or modelling.

o In some instances, parameter estimates may
be OK, but standard errors too small.
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Lack of Independence

o To account for ‘trap response’ (unusual in
CT studies); define a survey-specific
covariate that equals 1 for all surveys after
first detection at a site, O otherwise.

X;

h (1234
0101 |0 0 1 1
1101 |0 11 1
0001 |10 0 0 O

43 0000 [0 00O




Accounting for Lack of
Closure/Independence

o “Spatial Correlation” option in PRESENCE
(Hines et al. 2010, 2014)

o Motivating example: surveying tigers on trails in
India

o Introduce 2 new parameters

0 — Pr(tiger on trail given not on trail in previous
segment): thtaO

0’ — Pr(tiger on trail given on trail in previous
segment): thtal

0” — Pr(tiger on trail in first segment)
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Accounting for Lack of
Closure/Independence

07 (1-p,) 0'p,0'p;0'p, 0 (1- p5)
+0"(1- p,)0'p,0'p,0'p, (1-9)
+ (1 — 9”) 6p,6'p;6'p,0’ (1 —Ps )

_+(1 -0")6p,0'p,0'p, (1-6")

Pr(h, =01110) = y
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Accounting for Lack of
Closure/Independence

0"(1-p,)0'p,0 (1- p,)0'p,0'(1-p,)
+0"(1- p,)0'p,0'(1— p,)6'p, (1-6)
Pr(h; =01010) =y| +08"(1- p,)6'p, (1-6")0p,0"(1— p;)
+0"(1-p,)6'p, (1-6")6p, (1-6")

+ ...
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Accounting for Lack of

Closure/Independence
o Could also possibly be applied to
account for temporal correlation or

non-random changes in occupancy
within a season.

o Example: useful for modeling N.A.
Breeding Bird Survey data
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Unmodelled Heterogeneity

In occupancy probabillities

parameter estimates should still be
valid as average values across the
units surveyed.

In detection probabilities
occupancy will be underestimated.

covariates may account for some
sources of variation.
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Incorporating Heterogeneity

o Finite Mixtures

Assume occupied units consist of G
groups.

Each group has a different p.

Group membership is unknown hence
a unit may belong to any of the G
groups.

Pl’(hl :10):\|/[7I1p1(1— pl)-l_(l_ﬂ:l) pz(l_ pz)]
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Incorporating Heterogeneity

o Random Effects

Assume p; is a random value from a
continuous probability distribution
(e.g., beta distribution, logit-normal).

Closed form expressions possible for
some distributions.

Easily implemented using WinBUGS.
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Abundance Induced
Heterogeneity

o Differences In the local abundance of
the species between units may induce
heterogeneity in detection probabillity.

o Royle and Nichols (2003) suggested
an extension of the above method to
accommodate this.

P = (1_ I )Ni
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Abundance Induced
Heterogeneity

o Local abundance is unknown, but a

spatial distribution could be assumed
(e.g., Poisson).

Pr(h, =101) = Po(L; u) p};’ (1 p[l]) Pia
+Po(2; 1) pif! (1~ pfY') P

+.

. =3 Po(l w)pl (1-p7 ) ply
=1



Abundance Induced
Heterogeneity

3

Pr(h, =000) = Po(3, x) [ T(1- p}Y)

j=1

3

+Po(2;y)H(1_ pi[1_2])

. =Y Po(l; ,u)f[(l pi’)+ Po(0; )



Abundance Induced
Heterogeneity

o Occupancy Is now a derived
parameter: (1-e+#).

o Implicit assumption that the number of
animals at a unit is constant.

o Care must be taken in how
‘abundance’ should be interpreted.
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Abundance Induced
Heterogeneity

o Similar model can result through
random effect on complementary log-
log link function for p.

o A good approach for incorporating
heterogeneity in detection for
occupancy estimation, less reliable if
iInferences about abundance are
desired.
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Species Misidentification
(False Positives)

o If species Is falsely detected then
occupancy could be overestimated.

o Much recent work; now a separate
lecture

o Perhaps not so important with
camera-trap data?
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Assessing Model Fit

o MacKenzie and Bailey (2004) suggest
a test based on the observed and
expected number of sites with each
possible detection history.

o The expected number is predicted by
the model, which may include
covariates.
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Assessing Model Fit

0 E, =Y Pr(h,)

o For example, for the history 101
Unit W, P, Pl‘(lOl)
1 0.30 0.76 0.042
2 035 0.74 0.050
3 040 0.72 0.058

4 045 0.70 0.066
58 Total 0.216




Assessing Model Fit

2
o TS =Z(Oh_E“)
h Eh

o Use parametric bootstrap to assess
the evidence for lack of fit.

TS

TSk
used to adjust SE’s and AlC values.

o C=

59



Assessing Model Fit

o Test has been shown to perform well to identify
poor model structure w.r.t. detection
probabilities, but not occupancy probabillities.

o Found to have generally low-power, especially
for the sample sizes expected in many
applications (s<100).

o Recommend 210,000 bootstraps.
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Assessing Model Fit

o Test should be conducted on the most
complicated model under
consideration (the global model) and
results applied to all models in
candidate set.

e.g., if from global model ¢ =1.53, this
value Is used to adjust AIC values and
SE'’s for all models.
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Assessing Model Fit

o Posterior predictive checks could be
used within a Bayesian setting to
determine whether observed features
of the data is “similar” to what a fitting
model would expect.
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Finite Population

o In some circumstances, the sample of s
units may constitute a large fraction of
the population of interest.

o Strictly speaking, the methods above
estimate the probability of occupancy.

an underlying characteristic of the
population.

o The proportion of units occupied is a
realisation of this process.
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Finite Population

o Distinction between them is of little
practical consequence for ‘infinite’
populations, but may be for ‘finite’
populations.

o SE’s will be too large if not accounted
for.
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Finite Population

o The proportion of occupied sites could
be calculated as:

s | Z\VI+Z\|1, /s

I=Sp+1 I=s+1

o SE derived from delta method
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N\

Finite Population

o When no covariates in the model,
variance (ie SE?) of the proportion is:

(s—sp )[\TJC (1—\TJC)+(S - S —1)Var(\’|‘]c):| n

(S—3)[W(1-¢)+(S—s—-1)var({)]+
(s=55)(S—s)Cov(¥*. )

'

SZ
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Finite Population

o Alternatively, easily implemented using the
data augmentation approach.

o Presence/absence of the species is
predicted for units where species not

detected.

o Occupancy state can also be predicted for
units that were never surveyed.
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Finite Population

model {
for (iinls) {
z[i] ~ dobern(psi)
z1[i] <- z[i}+1
for (JinL1K {
h[i,j] ~ dbern(p[j,z1]i]])
}

}
psi.fs<-sum(z[])/s

Post. Distn. y
mean = 0.56, sd = 0.10
{2.5, 50, 97.5} %iles =

{0.37, 0.56, 0.78}

Post. Distn. y*
mean = 0.56, sd = 0.08
{2.5, 50, 97.5} %iles =

{0.46, 0.54, 0.74}

## define prior distributions for model parameters

psi~dunif(0,1)
for (jinLlKk {
p[| 11] <-0
plj,2] ~ dunif(0,1)
}
}
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Spatial Correlation

o Probability of occupancy at a unit may depend upon
whether a ‘neighbouring’ unit is also occupied.

o Some forms of clustering may be well explained by
covariates.

o May not be important to account for if interest is in an
overall measure of occupancy.

o May be more important if interest is in maps or
predictions of unit-level occupancy.
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Spatial Correlation

o What fraction of cells are occupied?
o What would be the appropriate SE?
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Spatial Correlation

o Recent simulations have confirmed
that overall estimates are unbiased,
with appropriate standard errors,
without accounting for spatial

correlation when units are sampled
randomly.
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Spatial Correlation

o Sargeant et al. (2005) suggested an
approach using image restoration
methods.

doesn’t generalize easily to
Incorporate covariates.

o Magoun et al. (2007) assumed
spatially correlated residuals with
logistic regression.
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Spatial Correlation

o Alternatively, could model occupancy with
the autologistic function.

essentially the logit link with an ‘effect’
related to the number of occupied
neighboring units.

logit(y,) = 4, + Bx; + 5,0,

g; is a function of the occupied ‘neighboring’ units

o But the exact occupancy state of units will
often be unknown...

73



Spatial Correlation

o Theoretically, could integrate over all
unknown occupancy states for all
units in the landscape (i.e., develop
ODL).

o Practically, much easier to develop
the complete data likelihood and use
data augmentation or EM algorithm.
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Spatial Correlation

o Detection probability may also be a
function of the number of neighboring
occupied units (e.qg., harder to detect
a species at the edge of it's range).
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Summary

o Historically, investigating patterns in
occupancy has been the main focus of such

studies.

o A suite of flexible methods is now available
that account for:

detectability heterogeneity
covariates finite populations
unequal sampling effort spatial correlation

o Useful for assessing a snapshot of a
population, but not for understanding the

underlying dynamics.
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